Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.916
Filtrar
1.
ACS Biomater Sci Eng ; 9(9): 5332-5346, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37642176

RESUMO

Periodontitis is an inflammatory disease characterized by tooth loss and alveolar bone resorption. Bacteria are the original cause of periodontitis, and excess reactive oxygen species (ROS) encourage and intensify inflammation. In this study, a mussel-inspired and MnO2 NPs-reinforced adhesive hydrogel capable of alleviating periodontitis with improved antibacterial and antioxidant abilities was developed. The hydrogel was created by combining polyvinyl alcohol (PVA), 3,4-dihydroxy-d-phenylalanine (DOPA), and MnO2 nanoparticles (NPs) (named PDMO hydrogel). The hydrogel was demonstrated to be able to scavenge various free radicals (including total ROS─O2•- and OH•) and relieve the hypoxia in an inflammatory microenvironment by scavenging excess ROS and generating O2 due to its superoxide dismutase (SOD)/catalase (CAT)-like activity. Besides, under 808 nm near-infrared (NIR) light, the photothermal performance of the PDMO hydrogel displayed favorable antibacterial and antibiofilm effects toward Escherichia coli, Staphylococcus aureus, and Porphyromonas gingivalis (up to nearly 100% antibacterial rate). Furthermore, the PDMO hydrogel exhibited favorable therapeutic efficacy in alleviating gingivitis in Sprague-Dawley rats, even comparable to or better than the commercial PERIO. In addition, in the periodontitis models, the PDMO2 group showed the height of the residual alveolar bone and the smallest shadow area of low density among other groups, indicating the positive role of the PDMO2 hydrogel in bone regeneration. Finally, the biosafety of the PDMO hydrogel was comprehensively investigated, and the hydrogel was demonstrated to have good biocompatibility. Therefore, the developed PDMO hydrogel provided an effective solution to resolve biofilm recolonization and oxidative stress in periodontitis and could be a superior candidate for local drug delivery system in the clinical management of periodontitis with great potential for future clinical translation.


Assuntos
Hidrogéis , Periodontite , Periodontite/tratamento farmacológico , Hidrogéis/administração & dosagem , Hidrogéis/síntese química , Hidrogéis/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Animais , Ratos , Ratos Sprague-Dawley , Regeneração Óssea/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
2.
Nature ; 618(7966): 740-747, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37344650

RESUMO

Load-bearing tissues, such as muscle and cartilage, exhibit high elasticity, high toughness and fast recovery, but have different stiffness (with cartilage being significantly stiffer than muscle)1-8. Muscle achieves its toughness through finely controlled forced domain unfolding-refolding in the muscle protein titin, whereas articular cartilage achieves its high stiffness and toughness through an entangled network comprising collagen and proteoglycans. Advancements in protein mechanics and engineering have made it possible to engineer titin-mimetic elastomeric proteins and soft protein biomaterials thereof to mimic the passive elasticity of muscle9-11. However, it is more challenging to engineer highly stiff and tough protein biomaterials to mimic stiff tissues such as cartilage, or develop stiff synthetic matrices for cartilage stem and progenitor cell differentiation12. Here we report the use of chain entanglements to significantly stiffen protein-based hydrogels without compromising their toughness. By introducing chain entanglements13 into the hydrogel network made of folded elastomeric proteins, we are able to engineer highly stiff and tough protein hydrogels, which seamlessly combine mutually incompatible mechanical properties, including high stiffness, high toughness, fast recovery and ultrahigh compressive strength, effectively converting soft protein biomaterials into stiff and tough materials exhibiting mechanical properties close to those of cartilage. Our study provides a general route towards engineering protein-based, stiff and tough biomaterials, which will find applications in biomedical engineering, such as osteochondral defect repair, and material sciences and engineering.


Assuntos
Materiais Biocompatíveis , Cartilagem , Hidrogéis , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Cartilagem/química , Colágeno/química , Conectina/química , Hidrogéis/síntese química , Hidrogéis/química , Proteoglicanas/química , Engenharia Tecidual/métodos , Humanos
3.
Langmuir ; 38(41): 12602-12609, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36194518

RESUMO

Droplet fusion technology is a key technology for many droplet-based biochemical medical applications. By integrating a symmetrical flow channel structure, we demonstrate an acoustics-controlled fusion method of microdroplets using surface acoustic waves. Different kinds of microdroplets can be staggered and ordered in the symmetrical flow channel, proving the good arrangement effect of the microfluidic chip. This method can realize not only the effective fusion of microbubbles but also the effective fusion of microdroplets of different sizes without any modification. Further, we investigate the influence of the input frequency and peak-to-peak value of the driving voltage on microdroplets fusion, giving the effective fusion parameter conditions of microdroplets. Finally, this method is successfully used in the preparation of hydrogel microspheres, offering a new platform for the synthesis of hydrogel microspheres.


Assuntos
Acústica , Hidrogéis , Microbolhas , Microesferas , Hidrogéis/síntese química , Hidrogéis/química , Microfluídica
4.
Sci Rep ; 12(1): 2072, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136126

RESUMO

Herein, four novel and bio-based hydrogel samples using sodium alginate (SA) and chitosan (CH) grafted with acrylamide (AAm) and glycidyl methacrylate (GMA) and their reinforced nanocomposites with graphene oxide (GO) were synthesized and coded as SA-g-(AAm-co-GMA), CH-g-(AAm-co-GMA), GO/SA-g-(AAm-co-GMA), and GO/CH-g-(AAm-co-GMA), respectively. The morphology, net charge, and water absorption capacity of samples were entirely changed by switching the biopolymer from SA to CH and adding a nano-filler. The proficiencies of hydrogels were compared in the immobilization of a model metagenomic-derived xylanase (PersiXyn9). The best performance was observed for GO/SA-g-poly(AAm-co-GMA) sample indicating better stabilizing electrostatic attractions between PersiXyn9 and reinforced SA-based hydrogel. Compared to the free enzyme, the immobilized PersiXyn9 on reinforced SA-based hydrogel showed a 110.1% increase in the released reducing sugar and almost double relative activity after 180 min storage. While immobilized enzyme on SA-based hydrogel displayed 58.7% activity after twelve reuse cycles, the enzyme on CH-based carrier just retained 8.5% activity after similar runs.


Assuntos
Alginatos/química , Quitosana/química , Endo-1,4-beta-Xilanases/química , Enzimas Imobilizadas/química , Hidrogéis/química , Hidrogéis/síntese química , Acrilamida/química , Biocatálise , Compostos de Epóxi/química , Grafite/química , Ciência dos Materiais/métodos , Metacrilatos/química , Microscopia Eletrônica de Varredura , Nanocompostos/química , Eletricidade Estática
5.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35163172

RESUMO

The process of full-thickness skin regeneration is complex and has many parameters involved, which makes it difficult to use a single dressing to meet the various requirements of the complete regeneration at the same time. Therefore, developing hydrogel dressings with multifunction, including tunable rheological properties and aperture, hemostatic, antibacterial and super cytocompatibility, is a desirable candidate in wound healing. In this study, a series of complex hydrogels were developed via the hydrogen bond and covalent bond between chitosan (CS) and alginate (SA). These hydrogels exhibited suitable pore size and tunable rheological properties for cell adhesion. Chitosan endowed hemostatic, antibacterial properties and great cytocompatibility and thus solved two primary problems in the early stage of the wound healing process. Moreover, the sustained cytocompatibility of the hydrogels was further investigated after adding FGF and VE-cadherin via the co-culture of L929 and EC for 12 days. The confocal 3D fluorescent images showed that the cells were spherical and tended to form multicellular spheroids, which distributed in about 40-60 µm thick hydrogels. Furthermore, the hydrogel dressings significantly accelerate defected skin turn to normal skin with proper epithelial thickness and new blood vessels and hair follicles through the histological analysis of in vivo wound healing. The findings mentioned above demonstrated that the CS/SA hydrogels with growth factors have great potential as multifunctional hydrogel dressings for full-thickness skin regeneration incorporated with hemostatic, antibacterial, sustained cytocompatibility for 3D cell culture and normal skin repairing.


Assuntos
Antígenos CD/farmacologia , Caderinas/farmacologia , Fatores de Crescimento de Fibroblastos/farmacologia , Pele/metabolismo , Alginatos/química , Animais , Antibacterianos/química , Curativos Hidrocoloides , Linhagem Celular , China , Quitosana/química , Hemostáticos/química , Hidrogéis/síntese química , Hidrogéis/química , Masculino , Coelhos , Ratos , Ratos Sprague-Dawley , Pele/efeitos dos fármacos , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Cicatrização/fisiologia
6.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164146

RESUMO

3D-printed hydrogels are particularly advantageous as drug-delivery platforms but their loading with water-soluble active compounds remains a challenge requiring the development of innovative inks. Here, we propose a new 3D extrusion-based approach that, by exploiting the internal gelation of the alginate, avoids the post-printing crosslinking process and allows the loading of epirubicin-HCl (EPI). The critical combinations of alginate, calcium carbonate and d-glucono-δ-lactone (GDL) combined with the scaffold production parameters (extrusion time, temperature, and curing time) were evaluated and discussed. The internal gelation in tandem with 3D extrusion allowed the preparation of alginate hydrogels with a complex shape and good handling properties. The dispersion of epirubicin-HCl in the hydrogel matrix confirmed the potential of this self-crosslinking alginate-based ink for the preparation of 3D-printed drug-delivery platforms. Drug release from 3D-printed hydrogels was monitored, and the cytotoxic activity was tested against MCF-7 cells. Finally, the change in the expression pattern of anti-apoptotic, pro-apoptotic, and autophagy protein markers was monitored by liquid-chromatography tandem-mass-spectrometry after exposure of MCF-7 to the EPI-loaded hydrogels.


Assuntos
Alginatos , Portadores de Fármacos , Epirubicina , Hidrogéis , Impressão Tridimensional , Alginatos/química , Alginatos/farmacologia , Reagentes de Ligações Cruzadas/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Epirubicina/química , Epirubicina/farmacocinética , Epirubicina/farmacologia , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Hidrogéis/farmacologia , Células MCF-7
7.
Carbohydr Polym ; 278: 118907, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973728

RESUMO

Stimuli-responsive hydrogels have garnered the attention of the hydrogel industry, as they are able to change their physical and chemical properties based on changing external stimuli such as pH, temperature, ionic strength, electromagnetic fields, and light. However, stimuli-responsive hydrogel applications are hindered due to their inevitable swelling and shrinkage. Bacterial cellulose (BC), a natural hydrogel with tightly packed cellulose nanofibers (CNFs) was oxidized into dialdehyde BC (DABC) and was composited with chitosan (CS), a readily available natural polymer, to develop a mechanically adaptive hydrogel composite under different pH conditions. Composites exhibit pH sensitivity by presenting higher mechanical properties under acidic conditions and lower mechanical properties under basic conditions owing to the protonation of amino groups of the chitosan chains. Osmotic pressure is built up under acidic conditions, increasing the mechanical strength of the composites. The good three-dimensional stability of composites enables them to consistently maintain their volume when exposed to acidic or basic conditions.


Assuntos
Celulose Oxidada/química , Quitosana/química , Hidrogéis/síntese química , Nanofibras/química , Bactérias/química , Hidrogéis/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula
8.
Carbohydr Polym ; 278: 118910, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973731

RESUMO

Staphylococcus aureus (S. aureus) is the major pathogen responsible for mastitis in dairy cows, an important threat to their health, but prevention of S. aureus infection of the mammary gland remains challenging. Berberine hydrochloride (BH), a naturally occurring phytochemical, exhibits a wide range of activities, including antibacterial effects on S. aureus. In this study, we prepared a novel berberine hydrochloride-carboxymethyl chitosan hydrogel (BH-CMCH) with excellent thermosensitivity, injectability and in vitro antibacterial activity. In a rat model of mastitis induced by S. aureus, mammary duct injection of BH-CMCH reduced the bacterial load in infected mammary gland tissue and protected the tissue from damage from infection. In addition, proteomics analysis showed that mammary duct injection of BH-CMCH enhanced autolysosome degradation and promoted the innate immune response by activating the lysosomal pathway and up-regulating related significantly differentially expressed proteins (SDEPs). Taken together, the findings support the potential of BH-CMCH as an antibacterial agent against S. aureus-induced mastitis.


Assuntos
Antibacterianos/farmacologia , Berberina/farmacologia , Quitosana/análogos & derivados , Hidrogéis/farmacologia , Mastite/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Berberina/química , Quitosana/química , Quitosana/farmacologia , Feminino , Hidrogéis/síntese química , Hidrogéis/química , Testes de Sensibilidade Microbiana , Ratos , Ratos Sprague-Dawley
9.
Carbohydr Polym ; 278: 118930, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973748

RESUMO

Because nanocellulose has a large specific surface area and abundant hydroxyl functional groups due to its unique nanomorphology, interest increases as an eco-friendly water treatment material. However, the distinctive properties of nanocellulose, which exists in a dispersion state, strongly hamper its usage in practical water treatment processes. Additionally, nanocellulose shows low performance in removing anionic pollutants because of its anionic characteristics. In an effort to address this challenge, regenerated cellulose (RC) hydrogel was fabricated through cellulose's dissolution and regeneration process using an eco-friendly aqueous solvent system. Subsequently, a crosslinking process was carried out to introduce the cationic functional groups to the RC surface PEI coating (P/RC). As a result, the PEI surface cationization process improved the mechanical rigidity of RC and showed an excellent Cr(VI) removal capacity of 578 mg/g. In addition, the prepared P/RC maintained more than 90% removal efficiency even after seven reuses.


Assuntos
Celulose/química , Cromo/isolamento & purificação , Hidrogéis/química , Nanopartículas/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Ânions/química , Ânions/isolamento & purificação , Cátions/química , Cromo/química , Hidrogéis/síntese química , Tamanho da Partícula , Polietilenoimina/química , Propriedades de Superfície , Poluentes Químicos da Água/química
10.
Carbohydr Polym ; 278: 119000, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973802

RESUMO

Designing adhesive hydrogel wound dressings with inherent antibacterial and antioxidant properties is desirable to treat cutaneous full-thickness injuries in clinical care. Herein, a series of photo-induced Schiff base crosslinking-based adhesive hydrogels with promising traits are designed and prepared through Diels-Alder (DA) reactions between functional groups-grafted carboxymethyl chitosan (CMCS) and a photo-responsive polyethylene glycol (PEG) crosslinker. The quaternary ammonium and phenol groups in modified CMCS endows hydrogels excellent antibacterial and antioxidant properties. Upon UV (365 nm) irradiation, the generated o-nitrosobenzaldehyde from the photo-isomerization of o-nitrobenzyl in PEG derivative can subsequently crosslink with amino groups on tissue interfaces via Schiff base, endowing the hydrogel with well adhesiveness. Additionally, the hydrogel exhibits good BSA adsorption capacity, cytocompatibility and hemostatic property. The in vivo full-thickness skin defect study on mice indicates that the multi-functional hydrogel with considerable collagen deposition and vascularization capacities can be an effective and promising adhesive dressing for improving wound healing.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Quitosana/análogos & derivados , Hidrogéis/farmacologia , Adesivos Teciduais/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Galinhas , Quitosana/síntese química , Quitosana/química , Quitosana/farmacologia , Escherichia coli/efeitos dos fármacos , Feminino , Hidrogéis/síntese química , Hidrogéis/química , Camundongos , Camundongos Endogâmicos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Células NIH 3T3 , Tamanho da Partícula , Processos Fotoquímicos , Picratos/antagonistas & inibidores , Pele/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Suínos , Adesivos Teciduais/síntese química , Adesivos Teciduais/química , Raios Ultravioleta
11.
Molecules ; 27(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35011513

RESUMO

Intelligent stimulus-triggered release and high drug-loading capacity are crucial requirements for drug delivery systems in cancer treatment. Based on the excessive intracellular GSH expression and pH conditions in tumor cells, a novel glutathione (GSH) and pH dual-responsive hydrogel was designed and synthesized by conjugates of glutamic acid-cysteine dendrimer with alginate (Glu-Cys-SA) through click reaction, and then cross-linked with polyethylene glycol (PEG) through hydrogen bonds to form a 3D-net structure. The hydrogel, self-assembled by the inner disulfide bonds of the dendrimer, is designed to respond to the GSH heterogeneity in tumors, with a remarkably high drug loading capacity. The Dox-loaded Glu-Cys-SA hydrogel showed controlled drug release behavior, significantly with a release rate of over 76% in response to GSH. The cytotoxicity investigation indicated that the prepared DOX-loaded hydrogel exhibited comparable anti-tumor activity against HepG-2 cells with positive control. These biocompatible hydrogels are expected to be well-designed GSH and pH dual-sensitive conjugates or polymers for efficient anticancer drug delivery.


Assuntos
Alginatos , Antineoplásicos , Dendrímeros , Doxiciclina , Hidrogéis , Neoplasias/tratamento farmacológico , Alginatos/química , Alginatos/farmacocinética , Alginatos/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Dendrímeros/química , Dendrímeros/farmacocinética , Dendrímeros/farmacologia , Doxiciclina/química , Doxiciclina/farmacocinética , Doxiciclina/farmacologia , Células Hep G2 , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Hidrogéis/farmacocinética , Hidrogéis/farmacologia , Camundongos , Neoplasias/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046028

RESUMO

Mechanophores are molecular motifs that respond to mechanical perturbance with targeted chemical reactions toward desirable changes in material properties. A large variety of mechanophores have been investigated, with applications focusing on functional materials, such as strain/stress sensors, nanolithography, and self-healing polymers, among others. The responses of engineered mechanophores, such as light emittance, change in fluorescence, and generation of free radicals (FRs), have potential for bioimaging and therapy. However, the biomedical applications of mechanophores are not well explored. Herein, we report an in vitro demonstration of an FR-generating mechanophore embedded in biocompatible hydrogels for noninvasive cancer therapy. Controlled by high-intensity focused ultrasound (HIFU), a clinically proven therapeutic technique, mechanophores were activated with spatiotemporal precision to generate FRs that converted to reactive oxygen species (ROS) to effectively kill tumor cells. The mechanophore hydrogels exhibited no cytotoxicity under physiological conditions. Upon activation with HIFU sonication, the therapeutic efficacies in killing in vitro murine melanoma and breast cancer tumor cells were comparable with lethal doses of H2O2 This process demonstrated the potential for mechanophore-integrated HIFU combination as a noninvasive cancer treatment platform, named "mechanochemical dynamic therapy" (MDT). MDT has two distinct advantages over other noninvasive cancer treatments, such as photodynamic therapy (PDT) and sonodynamic therapy (SDT). 1) MDT is ultrasound based, with larger penetration depth than PDT. 2) MDT does not rely on sonosensitizers or the acoustic cavitation effect, both of which are necessary for SDT. Taking advantage of the strengths of mechanophores and HIFU, MDT can provide noninvasive treatments for diverse cancer types.


Assuntos
Fenômenos Biomecânicos , Biopolímeros/química , Hidrogéis/química , Ondas Ultrassônicas , Animais , Compostos Azo/química , Humanos , Hidrogéis/síntese química , Melanoma Experimental , Camundongos , Neoplasias/terapia , Polietilenoglicóis/química , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Termodinâmica , Terapia por Ultrassom/métodos
13.
ACS Appl Mater Interfaces ; 14(1): 236-244, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34935360

RESUMO

Gelatin is one of the most versatile biopolymers in various biomedical applications. A gelatin derivative gelatin-catechol (Gel-C) was developed in this study to further optimize its chemical and physical properties such as thermal reversibility and injectability. We found that Gel-C remains in a solution state at room temperature, and the temperature-dependent gelation capability of gelatin is well preserved in Gel-C. Its gel-forming temperature decreased to about 10 °C (about 30 °C for gelatin), and a series of gelatin derivatives with different gel-forming temperatures (10-30 °C) were formed by mixing gelatin and Gel-C in different ratios. Additionally, irreversible Gel-C hydrogels could be made without the addition of external stimuli by combining the physical cross-linking of gelatin and the chemical cross-linking of catechol. At the same time, properties of Gel-C hydrogels such as thermal reversibility and injectability could be manipulated by controlling the temperature and pH of the precursor solution. By simulating the formation of an irreversible Gel-C hydrogel in vivo, an in situ gelling system was fabricated by lowering the local temperature of the hydrogel with cold shock, thus realizing targeted and localized molecular delivery with prolonged retention time. This simple system integrated with the temperature responsiveness of gelatin and chemical cross-linking of catechol groups thus provides a promising platform to fabricate an in situ gelling system for drug delivery.


Assuntos
Catecóis/química , Preparações de Ação Retardada/química , Gelatina/química , Hidrogéis/química , Animais , Catecóis/administração & dosagem , Catecóis/síntese química , Catecóis/toxicidade , Linhagem Celular , Temperatura Baixa , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/toxicidade , Liberação Controlada de Fármacos , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/química , Gelatina/administração & dosagem , Gelatina/síntese química , Gelatina/toxicidade , Hidrogéis/administração & dosagem , Hidrogéis/síntese química , Hidrogéis/toxicidade , Concentração de Íons de Hidrogênio , Injeções Subcutâneas , Masculino , Camundongos Nus , Transição de Fase/efeitos dos fármacos , Soroalbumina Bovina/química , Temperatura de Transição
14.
Int J Biol Macromol ; 195: 530-537, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34920063

RESUMO

Luminescent hydrogels show extensive applications in many fields because of their excellent optical properties. Although there are many matrixes used to prepare luminescent hydrogels, the synthesis of protein-based luminescent hydrogels is still urgently needed to explore due to their good biodegradability and biocompatibility. In this work, a color-tunable, self-healing protein-based luminescent hydrogel consisting of bovine serum albumin (BSA) and lanthanide complexes is prepared via reductant-triggered gelation. Firstly, a bifunctional organic ligand named 4-(phenylsulfonyl)-pyridine-2,6-dicarboxylic acid (4-PSDPA) is synthesized, which can react with thiol groups and effectively sensitize the luminescence of Eu3+ and Tb3+ ions. Then, the BSA is treated with a reducing agent tris(2-carboxyethyl)phosphine (TCEP) to produce thiol groups. And the newly formed thiol groups can re-match to form disulfide bonds between two BSA molecules or react with Ln(4-PSDPA)3 complexes, resulting in the formation of an albumin-based luminescent hydrogel. Furthermore, the self-healing, biodegradability and biocompatibility of albumin-based hydrogels have also been demonstrated. We expect that the newly developed multifunctional protein-based hydrogels will find potential applications in the fields of biomedical engineering and optical devices.


Assuntos
Hidrogéis/química , Elementos da Série dos Lantanídeos/química , Luminescência , Substâncias Redutoras/química , Materiais Biocompatíveis , Fenômenos Químicos , Técnicas de Química Sintética , Humanos , Hidrogéis/síntese química , Teste de Materiais , Fenômenos Mecânicos , Soroalbumina Bovina/química , Análise Espectral
15.
J Mater Chem B ; 10(2): 170-203, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34889937

RESUMO

Absorbent polymers or hydrogel polymer materials have an enhanced water retention capacity and are widely used in agriculture and medicine. The controlled release of bioactive molecules (especially drug proteins) by hydrogels and the encapsulation of living cells are some of the active areas of drug discovery research. Hydrogel-based delivery systems may result in a therapeutically advantageous outcome for drug delivery. They can provide various sequential therapeutic agents including macromolecular drugs, small molecule drugs, and cells to control the release of molecules. Due to their controllable degradability, ability to protect unstable drugs from degradation and flexible physical properties, hydrogels can be used as a platform in which various chemical and physical interactions with encapsulated drugs for controlled release in the system can be studied. Practically, hydrogels that possess biodegradable properties have aroused greater interest in drug delivery systems. The original three-dimensional structure gets broken down into non-toxic substances, thus confirming the excellent biocompatibility of the gel. Chemical crosslinking is a resource-rich method for forming hydrogels with excellent mechanical strength. But in some cases the crosslinker used in the synthesis of the hydrogels may cause some toxicity. However, the physically cross-linked hydrogel preparative method is an alternative solution to overcome the toxicity of cross-linkers. Hydrogels that are responsive to stimuli formed from various natural and synthetic polymers can show significant changes in their properties under external stimuli such as temperature, pH, light, ion changes, and redox potential. Stimulus-responsive hydrogels have a wider range of applications in biomedicine including drug delivery, gene delivery and tissue regeneration. Stimulus-responsive hydrogels loaded with multiple drugs show controlled and sustained drug release and can act as drug carriers. By integrating stimulus-responsive hydrogels, such as those with improved thermal responsiveness, pH responsiveness and dual responsiveness, into textile materials, advanced functions can be imparted to the textile materials, thereby improving the moisture and water retention performance, environmental responsiveness, aesthetic appeal, display and comfort of textiles. This review explores the stimuli-responsive hydrogels in drug delivery systems and examines super adsorbent hydrogels and their application in the field of agriculture.


Assuntos
Agricultura/métodos , Preparações de Ação Retardada/química , Hidrogéis/química , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/classificação , Hidrogéis/síntese química , Hidrogéis/classificação , Concentração de Íons de Hidrogênio , Oxirredução , Polímeros/química , Materiais Inteligentes/síntese química , Materiais Inteligentes/química , Materiais Inteligentes/classificação , Temperatura , Água/química
16.
Carbohydr Polym ; 277: 118871, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893276

RESUMO

In order to develop better wound dressings, a novel chitosan hydrogel (Cn-Nm gel) was designed and fabricated by using aldehyde-4-arm polyethylene glycol (4r-PEG-CHO) to crosslink the chitosan dissolved in alkaline solution, amino-4-arm polyethylene glycol (4r-PEG-NH2) was chosen as the additive simultaneously. The special dissolution technique and macromolecular crosslinking structure endows the Cn-Nm gels with better performance than that of gels prepared by acid dissolving method with micromolecule crosslinker. First, Cn-Nm gels own strong toughness with 500 kPa tensile strength and 1000% elongation, about 400% swelling ratio and fast water absorption rate. Second, about 300 kPa adhesive strength and strippability between the gels and skin is achieved. More importantly, Cn-Nm gels show nearly 100% antibacterial rate towards Escherichia coli and Staphylococcus aureus. Excellent biocompatibility is also proved by the mouse fibroblasts tests. All of the performance makes this developed chitosan-based gel be the potential candidate as a wound dressing.


Assuntos
Antibacterianos/farmacologia , Bandagens , Materiais Biocompatíveis/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos dos fármacos , Quitosana/síntese química , Quitosana/química , Quitosana/farmacologia , Reagentes de Ligações Cruzadas/síntese química , Reagentes de Ligações Cruzadas/química , Escherichia coli/efeitos dos fármacos , Hidrogéis/síntese química , Hidrogéis/química , Hidrogéis/farmacologia , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tamanho da Partícula , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Staphylococcus aureus/efeitos dos fármacos
17.
Carbohydr Polym ; 277: 118888, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893290

RESUMO

Programmable asymmetric hydrogels with tunable structure/shape or physical/chemical properties in response to external stimuli show particular significance in smart systems, but there is lack of simple, rapid, and cheap strategy to design such hydrogel systems. Herein, we report a one-step electrodeposition method to construct chitosan asymmetric hydrogels with tunable thickness and pore size that can be conveniently modulated by the process parameters. Our approach greatly simplifies the process of hydrogel preparation with complex shapes and asymmetric structure organization. The formation mechanism of asymmetric structure has been proposed, based on gelation behavior and entanglement of chitosan chains in the hydrogel-solution system under the electric field. By changing the shape of the electrodes, hydrogels with the morphology of strip, tube, flower, etc. can be obtained precisely and conveniently. They can perform programmable 2D to 3D smart dynamic deformation under pH and metal ions stimulation, indicating the broad application potential in soft robot and biosensor areas.


Assuntos
Quitosana/química , Hidrogéis/síntese química , Eletrodos , Galvanoplastia , Hidrogéis/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Cloreto de Sódio/química
18.
Int J Biol Macromol ; 196: 1-12, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-34843815

RESUMO

The purpose of this study is to develop a new polysaccharide-based hydrogel. The Box-Behnken design was used to optimize the optimal synthesis conditions of the hydrogel, with the swelling parameters as indicators. The findings of rheologic tests confirm that free radical polymerization and the introduction of linear polymers improved the mechanical strength of the hydrogel. Combined with the characterization results, the gel mechanism of BSP-g-PAA/PVA DN hydrogel was proposed. The intermolecular association and entanglement increase, which effectively dissipates energy, thereby enhancing the mechanical properties of the hydrogel. In vitro blood compatibility experiments show that DN hydrogel has a low hemolysis rate and a good coagulation effect. The material is non-cytotoxic to L929 cells. The hepatic haemorrhage and mouse-tail amputation models of rats and mice were used to further evaluate the in vivo wound sealing and hemostatic properties of the hydrogel. The blood loss and hemostatic time were significantly lower than those of the control group, indicating that the hydrogel has excellent hemostatic effects. Therefore, the obtained BSP-g-PAA/PVA DN network hydrogel has good comprehensive properties and is expected to be used as a hemostatic material or a precursor of a drug carrier and a tissue engineering scaffold.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Hemostáticos/química , Hemostáticos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Orchidaceae/química , Polissacarídeos/química , Animais , Fenômenos Químicos , Técnicas de Química Sintética , Hemostáticos/síntese química , Hidrogéis/síntese química , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Extratos Vegetais/química , Ratos , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
19.
Int J Biol Macromol ; 194: 811-818, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843818

RESUMO

It is a huge challenge to construct a nanoprobe that can convert temperature stimulation into monochromatic signal with "turn-on" function. Here, a drug delivery system of berberine (BBR)-loaded hyaluronic acid (HA)-modified-L-cysteine (Cys) grafted (N-isopropylacrylamide) (PNIPAM) was structured. HA-Cys-PN/BBR does not need to introduce other substances or external stimuli, by adjusting the temperature of this system, the fluorescence responsive intensity and reversible reciprocating control of the nanohydrogel with aggregation induced emission (AIE) performance can be realized. In addition, CD44-HA interaction can be used as targeting the delivery of cancer cells, thus, there is a great interest in development of targeting and imaging agents as payloads for tumor tissue therapy. Therefore, it can provide a side of the development with self-released drugs in the therapy of cancers or bacterial infections. Thus, HA-Cys-PN/BBR as AIE reversible nanogel has longer-term applications in biomedical applications.


Assuntos
Resinas Acrílicas/química , Ácido Hialurônico/química , Hidrogéis/química , Nanogéis/química , Fenômenos Químicos , Técnicas de Química Sintética , Portadores de Fármacos , Humanos , Hidrogéis/síntese química , Imagem Molecular , Estrutura Molecular , Temperatura
20.
Int J Biol Macromol ; 194: 962-973, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848242

RESUMO

Herein, starch-cellulose interpenetrating network (IPN) hydrogels were fabricated by sequential Diels-Alder click reaction and photopolymerization in water. Moreover, ß-cyclodextrin, a commonly used host molecule in supramolecular chemistry, was also introduced to improve the performance of the IPN hydrogel. Firstly, the starch-based dienes were synthesized by modifying starch with N-maleoyl-ß-alanine, and the cellulose-based dienophiles were obtained by the reaction of cellulose and furfurylamide succinate; Secondly, the as-synthesized starch-based dienes, cellulose-based dienophiles, polymerizable ß-cyclodextrin, crosslinker, and acrylamide were dissolved in water and obtained a transparent solution. The solution was maintained in a water bath of 50 °C for 3 h, forming the first network via catalyst-free click Diels-Alder reaction, subsequently, the second network was formed by photopolymerization. Their preparation conditions were optimized via one-factor experiments and their properties and structures were characterized. Finally, 5- fluorouracil (5-Fu) was used as a model drug to study the sustained release behavior of the drug-loaded hydrogels. Release profile was found to fit in Ritger-Peppas kinetic model and polymer relaxation and drug diffusion made a valuable contribution to drug release. Taking into account the virtues of easily controllable photopolymerization and catalyst-free Diels-Alder reaction, the strategy described here has a potential application in the preparation of IPN hydrogels.


Assuntos
Celulose/química , Química Click , Reação de Cicloadição , Hidrogéis/química , Processos Fotoquímicos , Amido/química , Técnicas de Química Sintética , Química Click/métodos , Reagentes de Ligações Cruzadas/química , Reação de Cicloadição/métodos , Fluoruracila/química , Hidrogéis/síntese química , Estrutura Molecular , Polimerização , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...